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This paper presents computational solutions for unsteady viscous #ows in channels with
a downstream-facing step, followed by an oscillating #oor. These solutions of the unsteady
Navier}Stokes equations are obtained with a time-integration method using arti,cial compress-
ibility in a ,xed computational domain, which is obtained via a time-dependent coordinate
transformation from the #uid domain with moving boundaries. The computational method is
"rst validated for steady viscous #ows past a downstream-facing step by comparison with
previous numerical solutions and experimental results. This method is then used to obtain
solutions for unsteady viscous #ows with multiple separation regions over a downstream-facing
step with oscillating walls, for which there are no previously known solutions. Thus, the present
results may be used as benchmark solutions for the unsteady viscous #ows with multiple
separation regions between "xed and oscillating walls. ( 2001 Academic Press
1. INTRODUCTION

THE ANALYSIS OF UNSTEADY con"ned #ows with oscillating boundaries has recently received
an increased research interest for its applications to numerous engineering problems. The
unsteady annular #ows between cylindrical structures executing transverse oscillations,
which are of particular interest for #ow-induced vibration problems encountered in many
engineering systems, have been studied theoretically (based on simpli"ed theoretical mod-
els) and experimentally by numerous scientists, such as Chen et al. (1976), Inada & Hayama
(1990), Mateescu & PamKdoussis (1985, 1987), Mateescu et al. (1988, 1989) and others. These
simpli"ed theoretical models were proven to be in good agreement with experimental
results, at least for simple cylindrical geometries (Mateescu et al. 1989).

For more realistic and complex geometric con"gurations, there was a need for more
accurate solutions based on the time-accurate integration of the Navier}Stokes equations.
The computational methods developed for this purpose should display a high degree of
accuracy and computational e$ciency in order to eventually permit the simultaneous time
integration of the Navier}Stokes equations and the structural equations of motion, which is
required in the study of the #uid}structure interactions. Several such computational
methods have recently been developed based on a time-integration formulation with arti,cial
compressibility (Mateescu et al. 1994a,b, 1996) and on spectral-collocation or hybrid-spectral
formulations (Mateescu et al. 1994c, 1995), for the analysis of unsteady viscous #ows with
oscillating boundaries.

The unsteady con"ned #ows with oscillating walls encountered in many engineering
applications often display regions of separated #ows, generated by sharp geometric changes
of the "xed or oscillating walls. The correct numerical solution of these recirculating #ow
0889}9746/01/081187#19 $35.00/0 ( 2001 Academic Press
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regions in the presence of oscillating walls is essential in order to obtain correct numerical
solutions for the overall unsteady #ow. For this reason there is a need for benchmark
solutions of unsteady viscous #ows with separation regions in the presence of oscillating
boundaries in order to validate the numerical methods developed for this purpose.

For steady viscous #ows with multiple separation regions, the two-dimensional viscous
#ow over a downstream-facing step represents a benchmark problem, which was extensive-
ly used to validate the computational solutions by comparing them with previous numerical
or experimental results. The importance of such #ows with separation regions has been
underlined by numerous authors, such as Abbott & Kline (1962) and Goldstein et al. (1970).
Numerical solutions and experimental results were obtained by, among others, Armaly
et al. (1983), Goldstein et al. (1970), Gartling (1990), Kim & Moin (1985), Lee & Mateescu
(1998), and Sohn (1988). The locations of the separation and reattachment points of the
recirculation regions, evaluated numerically and measured experimentally, were used as
criteria for the validation of the numerical methods and the experimental techniques.

However, for the unsteady viscous #ows with separation regions and oscillating walls
past downstream-facing steps there are no previously known numerical solutions or
experimental results. Hence, the unsteady #ow solutions obtained in this paper for channels
with downstream-facing steps can be considered benchmark solutions for unsteady viscous
#ows with multiple separation regions in the presence of oscillating walls.

A numerical method is "rst developed in this paper for the analysis of unsteady con"ned
#ows with oscillating walls, based on the accurate time integration of the Navier}Stokes
equations. This time-integration method, using arti"cial compressibility, is applied in
a ,xed computational domain obtained via a time-dependent coordinate transformation from
the real #uid #ow domain with oscillating boundaries. The main features of the numerical
method are presented in Section 3.

This numerical method is "rst validated for steady #ows past a downstream-facing step,
by extensive comparisons with previous numerical solutions and experimental results.
Then, this time-integration method is used to obtain, for the "rst time, the solution for the
benchmark problem of unsteady viscous #ows in channels with downstream-facing steps
and oscillating walls, for which no previous solutions are known.

2. PROBLEM FORMULATION

The geometry of the two-dimensional channel #ow over a downstream-facing step is shown
in Figure 1. It consists in an upstream channel of height h followed by a suddenly enlarged
channel of height H. The channel lengths of the portions situated upstream and down-
stream of the backstep are l

0
H and l

1
H, respectively. In the numerical calculations

presented in this paper, the downstream channel height was taken as being twice the
Figure 1. Geometry of the unsteady #ow channel with a downstream-facing step followed by an oscillating #oor
of length Hl.



UNSTEADY VISCOUS FLOW OVER DOWNSTREAM-FACING STEP 1189
upstream portion of the channel, H"2 h, and hence the height of the downstream-facing
step was equal to the upstream channel height, h

s
"h"1

2
H. This geometry was used for an

easy comparison with previous numerical and experimental results for steady #ows, which
were mostly obtained for these geometrical parameters.

The #ow is referred to the Cartesian coordinates, Hx and Hy, centred at the step corner,
where x and y are nondimensional coordinates with respect to the downstream height, H.
At the upstream end of the channel there is a fully developed laminar #ow de"ned by the
steady axial velocity

;(y)"24;
0

y (0)5!y), for x"!l
0

and y3[0, 0)5], (1)

where ;
0

represents the mean axial #ow velocity.
In the steady #ow analysis discussed for the method validation in Section 4, in addition to

the above upstream #ow condition corresponding to the physical #ow problem (with the
nondimensional upstream length, l

0
, taken in the range 0)5}2 in the present computations),

another case of upstream boundary condition is also considered for comparison with
Gartling's benchmark solution (1990). In this case, the upstream length of the channel is
taken to be zero (l

0
"0), and the fully developed laminar velocity pro"le (1) is assumed just

above the downstream-facing step at the entrance of the downstream channel.
In the unsteady #ow case, a portion of the lower wall of length Hl, situated just behind the

downstream-facing step, is assumed to execute transverse oscillations de"ned by the
following lower wall equation:

Hy"G
Hg(x, t)!h

s
for x3[0, l],

!h
s

for x'l,
(2)

where g(x, t) is a sinusoidal-shape mode de"ned as

g (x, t)"e(t) sin(nx/l), where e (t)"A cos(ut), (3)

in which t";
0
t*/H and u"u*H/;

0
represent the nondimensional time and reduced

frequency of oscillation (where u*"2nf is the radian frequency of oscillation), respectively,
and A is the nondimensional oscillation amplitude (nondimensionalized with respect to H).

No-slip boundary conditions are implemented at the solid walls. The in#ow and out#ow
boundaries of the computational domain are situated at a distance Hl

0
and Hl

1
upstream

and downstream from the step, respectively, with l
0
"2 and l

1
"30 in the present computa-

tions. The out#ow boundary conditions for the velocity components are based on an
extrapolation to second-order accuracy from inside the computational domain. The outlet
pressure is obtained by integrating the normal momentum equation from the bottom wall
(Mateescu et al. 1994a), and in the "nal solution the pressure is adjusted to zero at the
concave step corner.

The incompressible time-dependent Navier}Stokes and continuity equations can be
expressed in nondimensional conservation law form as

LV

Lt
#Q(V, p)"0, $ 'V"0, (4)

where V, which represents the dimensionless #uid velocity vector, is nondimensionalized
with respect to ;

0
, and Q (V, p), which includes the convective derivative, pressure and

viscous terms, can be expressed in two-dimensional Cartesian coordinates in the form

V"Mu, vNT, Q (V, p)"MQ
u
(u, v, p), Q

v
(u, v, p)NT, (5)
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Lu

Lx
#

Lv

Ly
, (8)

in which Re"H;
0
/l represents the Reynolds number based on the downstream channel

height, and u, v and p represent the dimensionless velocity components and pressure,
nondimensionalized with respect to ;

0
and o;

0
2, respectively.

3. METHOD OF SOLUTION

For a rigorous implementation of the boundary conditions on the oscillating walls, the real
#uid #ow domain with moving boundaries is transformed into a "xed computational
domain by the time-dependent coordinate transformation

X"x, >"f (x, y, t), t"t, (9)

where f (x, y, t) is de"ned in terms of the oscillation mode, g(x, t), as

f (x, y, t)"1!
1!h

s
/H!y

1!g (x, t)
. (10)

In this "xed computational domain, the Navier}Stokes and continuity equations can be
expressed in the form

LV

Lt
#G (V, p)"0, DV"0, (11)

where

V"Mu, vNT, G(V, p)"MG
u
(u, v, p), G

v
(u, v, p)NT (12)
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u
(u, v, p)"
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2
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, (13)
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, (15)
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in which

C
1
"!

1

Re
, C

2
"

Lf

LX
, C

3
"

Lf

L>
, (16)

C
4
"

Lf

Lt
!

1
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LX2
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C
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In the present approach, the momentum equation is discretized in real time based on
a second-order three-point-backward implicit scheme:

(LV/Lt)n`1"(3Vn`1!4Vn#Vn~1)/(2 Dt), (18)

where the superscripts n-1, n and n#1 indicate three consecutive time levels, and Dt"tn`1

!tn"tn!tn~1 represents the time step. Thus, equations (11) can be expressed at the time
level tn`1 in the form

Vn`1#aGn`1"Fn, DVn`1"0, (19)

where

a"2 Dt/3, Gn`1"G(Vn`1, pn`1),

and

Fn"(4Vn#Vn~1)/3.

An iterative pseudo-time relaxation procedure with arti"cial compressibility is then used
in order to advance the solution of the semi-discretized equations from the real-time level
tn to tn`1 in the form

LV[ /Lq#V[ #aG[ "Fn, d (Lp\ /Lq)#DV[ "0, (20)

where V[ (q) and p\ (q) denote the pseudo-functions corresponding to the variable velocity and
pressure at pseudo-time q, between the real-time levels tn and tn`1, and d represents an
arti"cially added compressibility [the optimum value for d is determined based on the
theory of characteristics*see Mateescu et al. (1994a,b)]. An implicit Euler scheme is then
used to discretize equations (20) between the pseudo-time levels qv and qv`1"qv#Dq, and
the resulting equations are expressed in terms of the pseudo-time variations
Du"u\ v`1!u\ v, Dv"v\ v`1!v\ v, Dp"p\ v`1!p\ v, in the matrix form

[I#aDq(D
X
#D

Y
)]Df"DqS, (21)

where Df"[Du, Dv, Dp]T, a"2 Dt/3, I is the identity matrix, and
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, (22)
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S"G
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u
!u\ v!aGv

u
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v
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v
!(1/d) D V[ vH , (23)

in which the di!erential operators M and N are de"ned as

M/"

L(u\ v/)

LX
#C

1
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LX2

, (24)
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2

L (u\ v/)
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#C

3
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L>
#C

4
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L>
#C

5
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L>2

#C
6
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. (25)

A factored alternate direction implicit (ADI) scheme is used to separate equation (21) into
two successive sweeps in x and y, de"ned by the equations

[I#aDqD
Y
)] Df*"DqS, [I#aDqD

X
)] Df"Df*, (26)

where Df*"[Du*, Dv*, Dp*]T is a convenient intermediate variable vector.
These equations are further spatially discretized by central di!erencing on a stretched

staggered grid, based on hyperbolic sine and hyperbolic tangent stretching functions in the
x- and y-directions, respectively. A special decoupling procedure, based on the utilization of
the continuity equation, is then used for each sweep to reduce the resulting systems of
discretized equations to two sets of decoupled scalar tridiagonal equations [for details on
the spatial discretization and the decoupling procedure see Mateescu et al. (1994a,b)].

4. METHOD VALIDATION FOR THE STEADY VISCOUS FLOW WITH
SEPARATION REGIONS OVER A DOWNSTREAM-FACING STEP

Before using it for the analysis of unsteady #ows, this method has been applied for
validation to the study of steady two-dimensional #ows over a downstream-facing step. For
a meaningful comparison with the previous numerical and experimental results, computa-
tions have been performed for the value of the channel expansion ratio, H/h"2 (the step
height being in this case equal to the upstream channel height, h

s
"h"H/2), and for

various Reynolds numbers, including Re"800 which has been most commonly used in the
previous theoretical and experimental investigations. A fully developed laminar #ow de-
"ned by the parabolic velocity pro"le (1) is considered at the channel inlet. The following
two cases of the channel inlet geometry have been considered, again for meaningful
comparisons.

(i) Case in which the upstream portion of the channel is missing, that is l
0
"0, and the

fully developed velocity pro"le (1) is assumed just above the downstream-facing step, at
the entrance of the downstream channel. This case is considered for comparison with the
benchmark numerical solution given by Gartling (1990), as well as with other previous
numerical solutions.

(ii) The physical case in which the fully developed velocity pro"le (1) is assumed at the
inlet of the upstream portion of the channel having the nondimensional length l

0
with

respect to the downstream channel height, H. Computations were performed for increasing
values of l

0
(starting from 0) in order to study the e!ect of the upstream length of the channel

on the numerical solution obtained. It was found that increasing this nondimensional
length, l

0
, above 2 did not further in#uence the numerical solution for the range of Reynolds

numbers considered.



TABLE 1
Computed nondimensional lengths of separation on the lower and upper walls and the upper wall
separation and reattachment positions compared with previous numerical and experimental results

Lower wall Upper wall

Length of Length of Separation Reattachment
separation separation position position

¸
l

¸
u
"x

r
!x

s
x
s

x
r

Computational solutions for Re"800 and H/h"2
Present solution for l

0
"2 5)90 5)65 4)66 10)31

(with upstream channel)
Present solution for l

0
"0 6)09 5)63 4)85 10)47

(without upstream channel)
Gartling (1990) (l

0
"0) 6)10 5)63 4)85 10)48

Sohn (1988) (l
0
"0) 5)8 4)7 * *

Kim & Moin (1985) (l
0
"0) 6)0 5)75 * *

Experimental results
Lee & Mateescu (1998)* 6)45 5)1 5)15 10)25
Armaly et al. (1983)s 7)0 4)3 5)7 10)0

*For Re"805 and H/h"2.
sFor Re"805 and H/h"1)94.
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Unless otherwise stated, the numerical results for steady #ows presented in the following
were obtained using a stretched staggered grid with 1001]201 grid points for each variable
(that is, 2001]401 grid points in total) in the case l

0
"0, and 1097]201 grid points in the

case l
0
"2. The mesh spacing in the x-direction was minimum at the step, Dx

.*/
"0)0104

(for the staggered grid), and maximum at the outlet boundary, Dx
.!9

"0)0252, while in the
y-direction the minimum mesh spacing was at the walls and the step corner,
Dy

.*/
"0)00182. Computations were performed for a nondimensional length of the down-

stream channel, l
1
"30, with d"0)8 and Dq"0)4, and convergence was considered to have

been reached when all of the r.m.s. residuals were less than 10~9.
For Re"800, the #ow over the downstream-facing step is characterized by two separ-

ation regions, one at the lower wall just behind the step and the other at the upper wall. The
present results for the nondimensional lengths of separation on the lower and upper walls,
¸
l
and ¸

u
"x

r
!x

s
, and for the locations of the separation and reattachment points on the

upper wall, x
s
and x

r
, respectively, are compared in Table 1 with previous numerical and

experimental results. One can notice good agreement with the previous numerical solutions
obtained for the case l

0
"0. The agreement with the benchmark solution obtained by

Gartling (1990) is excellent, and this can also be seen from Table 2 in which the
cross-channel velocity pro"les are compared for two axial locations, x"7 and 15.

The agreement with the experimental results was not as good for this Reynolds number.
Thus, the experimental results obtained by Armaly et al. (1983), by using a laser-Doppler
velocimetry technique, displayed di!erences of the order of 20% with respect to the
theoretical results. More recently, Lee & Mateescu (1998) performed very thorough experi-
mental investigations using a nonintrusive technique based on multi-element hot-"lm
sensors glued on the wall surface. As shown in Table 1, their experimental results were much
closer to the numerical predictions, although the agreement cannot be considered satisfac-
tory for this Reynolds number.

As suggested by Armaly et al. (1983), Kim & Moin (1985) and Gartling (1990), these
discrepancies between the experimental results and the numerical predictions are due to



TABLE 2
Computed cross-channel velocity pro"les compared with Gartling's benchmark solution (for

Re"800 and l
0
"0)

Present solution Gartling 1990

x"7 x"15 x"7 x"15

y u 100 v u 100 v u 100 v u 100 v

0)50 0)000 0)000 0)000 0)000 0)000 0)000 0)000 0)000
0)45 !0)038 !0)027 0)101 0)020 !0)038 !0)027 0)101 0)021
0)40 !0)049 !0)086 0)202 0)072 !0)049 !0)086 0)202 0)072
0)35 !0)032 !0)147 0)304 0)139 !0)032 !0)147 0)304 0)140
0)30 0)015 !0)192 0)408 0)206 0)015 !0)193 0)408 0)207
0)25 0)093 !0)221 0)512 0)259 0)092 !0)225 0)512 0)260
0)20 0)204 !0)260 0)613 0)286 0)204 !0)268 0)613 0)288
0)15 0)349 !0)349 0)705 0)281 0)349 !0)362 0)704 0)283
0)10 0)523 !0)525 0)780 0)243 0)522 !0)544 0)779 0)245
0)05 0)710 !0)797 0)831 0)177 0)709 !0)823 0)831 0)180
0)00 0)886 !1)133 0)853 0)093 0)885 !1)165 0)853 0)095

!0)05 1)025 !1)469 0)844 0)002 1)024 !1)507 0)844 0)003
!0)10 1)106 !1)737 0)804 !0)083 1)105 !1)778 0)804 !0)081
!0)15 1)118 !1)884 0)737 !0)149 1)118 !1)925 0)737 !0)147
!0)20 1)061 !1)877 0)648 !0)186 1)062 !1)917 0)649 !0)185
!0)25 0)947 !1)712 0)546 !0)192 0)948 !1)748 0)547 !0)191
!0)30 0)791 !1)404 0)437 !0)167 0)792 !1)423 0)438 !0)166
!0)35 0)612 !0)976 0)327 !0)120 0)613 !1)000 0)328 !0)119
!0)40 0)426 !0)488 0)217 !0)065 0)428 !0)504 0)218 !0)065
!0)45 0)231 !0)112 0)108 !0)019 0)232 !0)118 0)109 !0)019
!0)50 0)000 0)000 0)000 0)000 0)000 0)000 0)000 0)000
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three-dimensional e!ects in the experimental channel #ows (as compared to the rigorous
two-dimensional computational solutions), which appear to become signi"cant for
Re'600. This explanation seems to be con"rmed by a very good agreement between the
present numerical solutions and the experimental results for lower Reynolds numbers, such
as Re"400 and 600. This can be seen for the lower wall separation length in Table 3, as
well as in Figure 2, which shows the variation with the Reynolds number of the separation
and reattachment locations on both the upper and lower walls.

A graphical illustration of the computed cross-channel velocity pro"le at various axial
locations along the computational domain (!2(x(30) is shown in Figure 3 for
Re"800 and an expansion ratio H/h"2. The streamline contours, illustrating the recir-
culation regions near the upper and lower walls, are also shown in the background in this
"gure.

The sensitivity of the numerical solution with the mesh re"nement was thoroughly
investigated in order to de"ne an optimum grid that can also be used for the unsteady
computations, which require a much larger amount of computational time. Table 4 shows
the computed separation and reattachment locations on the lower and upper walls for
various grids. One can notice that the solution obtained by using 351]71 grid points for
each variable (or 701]141 grid points in total) is very close to the fully converged solution,
which is practically obtained with 1001]201 grid points, and beyond this the numerical
solution is not in#uenced by the grid re"nement. As a result, all computations for steady
#ows have been performed on a mesh with 1001]201 grid points for each variable
(or 2001]401 grid points in total), and for unsteady #ows (which require a substantially



TABLE 3
Computed nondimensional length of separation on the lower wall, ¸

l
, compared with previous

numerical and experimental results for various Reynolds numbers

Re"400 Re"600 Re"800 Re"1000 Re"1200

Computational solutions for H/h"2
Kim & Moin (1985) (l

0
"0) 4)3 5)3 6)0 * *

Sohn (1988) (l
0
"0) 4)1 5)2 5)8 * *

Present solution for l
0
"0 4)32 5)37 6)09 6)71 7)29

(without upstream channel)
Present solution for l

0
"2 4)12 5)17 5)90 6)53 7)11

(with upstream channel)

Experimental results for *H/h"2; s H/h"1)94
Lee & Mateescu (1998)* 4)1 5)21 6)45 7)4 8)4
Armaly et al. (1983)s 4)3 5)8 7)1 8)1 8)9

*,sThe experimental Reynolds numbers were slightly di!erent in some cases (see also Figure 2).

Figure 2. Steady #ow over a downstream-facing step (H/h"2). Variation with the Reynolds number of the
location of the separation and reattachment points on the upper and lower walls. Comparison between the present
theoretical solutions (*, lower wall reattachment; } } }, upper wall separation; } ) } ) }, upper wall reattachment)

and experimental results: e, h, n, Lee & Mateescu (1998); r, j, m, Armaly et al. (1983).
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increased computational time) a mesh with 353]61 grid points for each variable (or
705]121 grid points in total) has been used instead.

The e!ect of the upstream length of the channel, l
0
, has also been studied, and the results

are shown in Table 5. One can notice that the solution obtained for l
0
"2 is fully converged



Figure 3. Steady #ow over a downstream-facing step (H/h"2 and Re"800). Typical cross-channel velocity
pro"les at various axial locations along the computational domain (!2(x(30), as well as the streamline

contours illustrating the recirculation regions near the upper and lower walls.

TABLE 4
Grid sensitivity of the numerical solution for H/h"2, Re"800 and l

0
"0 based on the computed

nondimensional lengths of separation and reattachment

Lower wall Upper wall

Grid points used for each variable ¸
l

¸
u
"x

r
!x

s
x
s

x
r

201]41 5)92 5)66 4)67 10)33
251]51 5)99 5)65 4)74 10)39
301]61 6)02 5)65 4)77 10)44
351]71 6)04 5)64 4)80 10)42
401]81 6)05 5)64 4)81 10)45
501]101 6)07 5)63 4)83 10)46
601]121 6)08 5)63 4)83 10)47
801]161 6)09 5)63 4)84 10)47

1001]201 6)09 5)63 4)85 10)47
1201]241 6)09 5)63 4)85 10)48
1401]281 6)09 5)63 4)85 10)48
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from this point of view, since an increase beyond this value did not further in#uence the
numerical solution. For both the steady and unsteady #ows the computations were
performed for an upstream channel length l

0
"2.

The location for the out#ow boundary of the computational domain was taken at
a nondimensional distance l

1
"30 (based on the downstream height, H) behind the step,

which corresponds to the value considered by Gartling (1990), and is double in comparison
with the value used by Kim & Moin (1985). This distance, l

1
"30, was proven to be

adequate, since the cross-channel velocity pro"le settled to a parabolic shape well before the
out#ow boundary (x"l

1
"30), as shown in Figure 3.



TABLE 5
In#uence of the upstream channel length, Hl

0
, on the numerical solution based on the computed

nondimensional lengths of separation and reattachment for H/h"2, Re"800

Lower wall Upper wall

Grid points used for each variable l
0

¸
l

¸
u
"x

r
!x

s
x
s

x
r

1001]201 0)00 6)09 5)63 4)85 10)47
1025]201 0)50 5)95 5)60 4)71 10)31
1049]201 1)00 5)91 5)64 4)67 10)31
1073]201 1)50 5)90 5)65 4)66 10)31
1097]201 2)00 5)90 5)65 4)66 10)31
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5. UNSTEADY VISCOUS FLOW WITH SEPARATIONS OVER
A DOWNSTREAM-FACING STEP WITH OSCILLATING WALLS

After validation, this method has been used in the analysis of two-dimensional unsteady
#ows with multiple separation regions in ducts with a downstream-facing step and an
oscillating #oor behind the step, as illustrated in Figure 1. Computations have been
performed for an expansion ratio H/h"2 and for values of the Reynolds number,
Re"H;

0
/l, ranging from 400 to 800, and of the oscillatory Reynolds number,

b"u*H2/l, between 20 and 80, which corresponds to various values of the reduced
frequency of oscillations, u"b/Re, between 0)05 and 0)20. The length of the oscillating
#oor portion was Hl"10 H, and the upstream and downstream lengths of the computa-
tional domain are l

0
"2 and l

1
"30, respectively. A stretched staggered grid with 353]61

grid points for each variable (corresponding to 705]121 grid points in total) has been used
for the unsteady #ow computations.

The real-time step was obtained by dividing the period of oscillations by N, where N"40
or 80 in some cases, which leads to a nondimensional value Dt"2n/(Nu), where u"b/Re.
The pseudo-time computations have been performed using d"0)25 and Dq"0)10. It was
found that an average number of 60 pseudo-time iterations per real-time step was required
to reduce the r.m.s. residuals adequately until convergence (a maximum number of 150
pseudo-time iterations was required in some cases during the "rst oscillation cycle).

The real-time integration was started from the steady #ow solution for "xed walls, and
was performed until all variables in the computational domain were executing steady
repeatable oscillations from one period to the next (usually after three oscillation cycles or
less in the cases considered).

Unsteady #ow computations have been performed for the case when a portion of the
lower wall of length Hl"10 H behind the step executes harmonic oscillations de"ned by
equation (2) for several values of the amplitude of oscillations, A. The computed locations of
the separation and reattachment points on the lower and upper walls are illustrated in
Figures 4}6 for several values of the Reynolds number, Re"H;

0
/l, between Re"400 and

800, for various values of the reduced frequency u"u*H/;
0
, in the range u"0)05 and

0)20 (which corresponds to an oscillatory Reynolds number, b"u*H2/l, between 20
and 80) and for several values of the nondimensional amplitude of oscillations, A, from
A"0)001 to 0)1. The variation in time of the mid-point displacement of the lower
oscillating wall is also indicated in Figures 4}6.

The in#uence of the Reynolds number on the location of the separation and reattachment
points is shown in Figure 4 for u"0)05 and A"0)05. One can notice that the locations of



Figure 4. Unsteady #ow over a downstream-facing step with an oscillating #oor (H/h"2). Typical in#uence of
Reynolds number, Re, on the variation in time of the location of the separation and reattachment points on the

upper and lower walls for u"0)05 and A"0)05.
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the separation and reattachment points on the lower and upper walls computed for
Re"600, 700 and 800 display oscillations in time, but both separation regions are present
during the entire oscillatory cycle.

However, it was found that for Re"400 and 500 the upper recirculation region is present
only during a certain portion of the oscillatory cycle, and simply disappears during the rest
of the cycle, as shown in Figure 4 (the lower wall separation generated by the downstream-
facing step is always present). Thus, for Re"400 the upper separation region is absent for
almost half of the oscillatory cycle.



Figure 5. Unsteady #ow over a downstream-facing step with an oscillating #oor (H/h"2). Typical in#uence of
the amplitude of oscillations, A, on the variation in time of the location of the separation and reattachment points

on the upper and lower walls for Re"400 and u"0)05.
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It was also found that the maximum length of the upper separation region (during an
oscillation cycle) increases substantially with the Reynolds number, with more than a
two-fold increase from Re"400 to 800. This observation is also valid for the lower
separation region, although the extent of increase is somewhat smaller.

The in#uence of the amplitude of oscillations, A, on the location of the separation and
reattachment edges is shown in Figure 5 for Re"400 and u"0)05. It was found that the
upper separation region is continuously present in time in the case of small amplitude
oscillations, such as A"0)01, but disappears for a good portion of the oscillation cycle in
the case of larger amplitude, such as A"0)05 and 0)01. At the same time, the length of



Figure 6. Unsteady #ow over a downstream-facing step with an oscillating #oor (H/h"2). Typical in#uence of
the reduced frequency of oscillations, u, on the variation in time of the location of the separation and reattachment

points on the upper and lower walls for Re"400 and A"0)05.
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the upper separation region increases substantially with the amplitude of oscillation, the
maximum length becoming more than double at A"0)1 in comparison to A"0)01. The
variation in time of the location of the lower wall reattachment also increases substantially
with the amplitude of oscillations. Figure 5 also shows the location of the separation and
reattachment points in the case of an extremely low amplitude oscillation of the wall,
A"0)001, which practically coincides with the results obtained for the steady #ow.

The in#uence of the reduced frequency of oscillations, u (or that of the oscillatory
Reynolds number, b"u Re) on the location of the separation and reattachment points is
shown in Figure 6 for Re"400 and A"0)05; in this "gure, the points representing the



Figure 7. Unsteady #ow over a downstream-facing step with an oscillating #oor (H/h"2, Re"400, u"0)05
and A"0)1). Typical cross-channel velocity pro"les at various axial locations along the computational domain
(!2(x(10) and streamline contours illustrating the separation regions near the upper and lower walls at four
di!erent moments during the oscillatory cycle: (a) after 4)00 oscillation cycles; (b) after 4)25 cycles; (c) after

4)50 cycles; (d) after 4)75 cycles.
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appearance/disappearance in time of the upper eddy were obtained by extrapolation from
the computed results.

It was found that the upper separation region disappears in this case for almost half of the
cycle duration. Interestingly, the time interval during which the upper separation region is
present decreases with the increase in the reduced frequency of oscillations. One can also
notice that the upper separation point is delayed in time with the increase in the reduced
frequency, while the reattachment point is advanced in time, thus decreasing the duration in
time during which the upper separation region is present.

A graphical illustration of the computed cross-channel velocity pro"le at various axial
locations along the computational domain (!2(x(30) is shown in Figures 7 and 8 for
Re"400, u"0)05 (b"20) and A"0)1, at several moments during the oscillation cycle:
(a) after 4)00 oscillation cycles of the oscillating portion of the lower wall, which is identical
with the moment de"ned after 5 oscillation cycles; (b) after 4)25 oscillation cycles; (c) after
4)50 oscillation cycles; (d) after 4)75 oscillation cycles. The streamline contours, indicating
the recirculation regions near the lower and the upper walls, are also shown in the
background of these "gures (no special attention should be given to the spacing between
streamlines, which does not represent equal increments in terms of the stream function or
#ow rate, and was arbitrarily chosen in order to enhance the graphical illustration of the
separation regions). In Figure 7 one can notice the variation in time of the recirculation



Figure 8. Unsteady #ow over a downstream-facing step with an oscillating #oor (H/h"2, Re"400, u"0)05
and A"0)1). Typical cross-channel velocity pro"les at various axial locations and streamline contours along the

entire computational domain (!2(x(30) after 4 oscillation cycles.
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bubbles near the upper and lower walls, and the complete disappearance of the upper
separation region at the moments (a) and (d).

It is interesting to note that the velocity pro"le becomes parabolic well upstream of the
outlet boundary of the computational domain (at x"l

1
"30), as shown in Figure 8, which

proves that the length of the computational domain behind the downstream-facing step was
adequately chosen. However, the mean #ow velocity at the outlet, and hence the outlet #ow
rate as well, slightly varies in time due to the pumping e!ect of the lower wall oscillations.
For example, in the case de"ned by Re"400, u"0)05 (b"20) and A"0)1, the outlet #ow
rate varies during the oscillation cycle with respect to the inlet #ow rate within 6)4%.

An enlarged graphical representation of the streamline contours is illustrated, for the
same moments of the oscillation cycle (a), (b), (c) and (d) of Figure 7, in Figure 9. The
evolution in time of the separation regions near the upper and lower walls is clearly shown
in this "gure, as well as the disappearance of the upper separation region at moments (a) and
(d). It is to be noted that the coordinates along and across the channel are represented at
di!erent scales in this "gure.

6. CONCLUSIONS

A time-accurate integration method using arti"cial compressibility is presented for the
analysis of unsteady viscous #ows with oscillating walls displaying multiple separation
regions. The method is used to solve the unsteady Navier}Stokes equations in a "xed
computational domain obtained via a time-dependent coordinate transformation from the
real #uid domain with moving boundaries.

The method was "rst validated for steady viscous #ows past a downstream-facing step by
comparison with previous numerical solutions and experimental results. The present
solutions for steady #ows were found to be in excellent agreement with the previous



Figure 9. Unsteady #ow over a downstream-facing step with an oscillating #oor (H/h"2, Re"400, u"0)05
and A"0)1). Enlarged graphical illustration of the streamline contours showing the evolution in time of the
separation regions near the upper and lower walls at four di!erent moments during the oscillatory cycle: (a) after
4)00 oscillation cycles; (b) after 4)25 cycles; (c) after 4)50 cycles; (d) after 4)75 cycles. The disappearance of the upper

separation region at moments (a) and (d) is clearly shown in this "gure.
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numerical results, and in good agreement with the experimental results for Reynolds
numbers smaller than 600. Larger di!erences with respect to the experimental results were
found for larger Reynolds numbers, due to three-dimensional e!ects present in the experi-
mental #ows.
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The method was then used to obtain solutions for the unsteady viscous #ows over
a downstream-facing step followed by an oscillating #oor, for which there are no previously
known solutions. This type of unsteady #ow is characterized by the presence of a separation
region near the lower wall, as well as of another separation region near the upper wall. The
locations of the separation and reattachment points on the lower and upper walls were
found to vary in time, as expected, due to the lower wall oscillations. The present solutions
show the in#uence of Reynolds number, oscillation amplitude, and reduced frequency
(or the oscillatory Reynolds number) on the variation in time of the separation and
reattachment locations.

Interestingly, it was found that for Reynolds numbers smaller than 600 the upper
separation region is present only for a portion of the oscillation cycle, and simply disappears
for the rest of the cycle. It was also found that the maximum length of the upper separation
region during the oscillation cycle, and to some extent that of the lower one, increases
substantially with the Reynolds number and with the amplitude of oscillations. The time
interval during which the upper separation is present decreases with the increase in the
oscillation frequency, the upper separation being delayed in time by the frequency increase,
while the upper reattachment is advanced in time.

The present unsteady #ow solutions, which are obtained for the "rst time, may be used
for the validation of future computational solutions and experimental results as
benchmark problems for unsteady #ows with multiple separation regions and oscillating
boundaries.
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